Formalizing Axiomatic Systems for Propositional Logic in Isabelle/HOL

Asta Halkjær From, Agnes Moesgård Eschen, Jørgen Villadsen Technical University of Denmark

Isabelle/HOL

Proof assistant based on higher-order logic

Every proof is checked mechanically

Create *canonical reference documents* for:

- logics
- metatheory
- algorithms

- ...

Our Work

Formalize six axiomatic proof systems for propositional logic Two flavours with different primitives:

- System_W.thy based on \bot , \rightarrow
- System_R.thy based on \neg , \lor

https://github.com/logic-tools/axiom

- Soundness and completeness
- Alternative and unnecessary axioms
- Deriving formulas

System	Source	Page $[3]$	Axioms
Axiomatics	Wajsberg 1937	159	$p \rightarrow (q \rightarrow p)$ $(p \rightarrow q) \rightarrow (q \rightarrow r) \rightarrow (p \rightarrow r)$ $((p \rightarrow q) \rightarrow p) \rightarrow p)$ $\perp \rightarrow p$
FW	Wajsberg 1939	163	$\begin{array}{l} p \rightarrow (q \rightarrow p) \\ (p \rightarrow (q \rightarrow r)) \rightarrow (p \rightarrow q) \rightarrow (p \rightarrow r) \\ ((p \rightarrow \bot) \rightarrow \bot) \rightarrow p) \end{array}$
WL	Lukasiewicz 1948	159	$((p \to q) \to r) \to ((r \to p) \to (s \to p))$ $\perp \to p$
Axiomatics	Rasiowa 1949	157	$p \bigvee p \to p$ $p \to p \bigvee q$ $(p \to q) \to (r \bigvee p) \to (q \bigvee r)$
RB	Russell 1908, Bernays 1926	157	$p \bigvee p \to p$ $p \to p \bigvee q$ $p \bigvee q \to q \bigvee p$ $(p \to q) \to (r \bigvee p) \to (q \bigvee r)$
PM	Whitehead & Russell 1910	0 -	$p \bigvee p \to p$ $p \to q \bigvee p$ $p \bigvee q \to q \bigvee p$ $(p \bigvee (q \bigvee r)) \to (q \bigvee (p \lor r))$ $(p \to q) \to (r \lor p) \to (q \lor r)$

Specifying a Language

Encode syntax as objects in the metalogic

```
datatype form = Falsity (\langle \perp \rangle) | Pro nat | Imp form form (infix \langle \rightarrow \rangle 0)
```

Interpret it into the metalogic

```
primrec semantics (infix \langle \models \rangle 0) where
 \langle (I \models \bot) = False \rangle |
 \langle (I \models (Pro n)) = I n \rangle |
 \langle (I \models (p \rightarrow q)) = (if I \models p then I \models q else True) \rangle
```

Example use

definition <valid $p \equiv \forall I. (I \models p) >$

Specifying a Proof System

Inductive predicate – built from:

- One rule (modus ponens)
- Four axiom schemas

inductive Axiomatics (<+>) where
MP <+ q> if <+ p> and <+ (p
$$\rightarrow$$
 q)> |
Imp1 <+ (p \rightarrow (q \rightarrow p))> |
Tran <+ ((p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r)))>
Clas <+ (((p \rightarrow q) \rightarrow p) \rightarrow p)> |
Expl <+ ($\perp \rightarrow$ p)>

Wajsberg 1937

The Simplest of Derivations

Consider the following syntactic abbreviation

```
abbreviation Truth (<T>) where <T \equiv (\perp \rightarrow \perp)>
```

These unfold automatically

The . proof method applies current facts as rules

theorem <⊢ ⊤> using Axiomatics.intros(5) .

Here we are using the fact $\vdash (\bot \rightarrow ?p)$, which unifies with the goal

Soundness

Important smoke test but tedious to check manually

Isabelle discharges all proof obligations automatically

theorem soundness: <⊢ p ⇒ I ⊨ p>
by (induct rule: Axiomatics.induct) auto

Enabled by formalizing both proof system and semantics

Completeness

We build on existing work [F. 2020]

Henkin-style proof based on maximal consistent sets

Model construction uses certain derivations

Two main tasks:

- Adapt formalization to same syntactic fragment
 - Easy to do with abbreviations
- Derive key formulas
 - Difficulty depends on proof system

Deriving Formulas I

Church has been an excellent source for relevant formulas

Let Automatic Theorem Provers and SMT solvers do the work

```
lemma Chul: \langle \vdash ((p \rightarrow (p \rightarrow q)) \rightarrow (p \rightarrow q)) \rangle sledgehammer
```

```
Sledgehammering...
Proof found...
"e": Try this: by (meson Clas MP Tran) (3 ms)
"vampire": Try this: by (meson Axiomatics.simps) (39 ms)
"cvc4": The prover gave up
"z3": Timed out
```

Deriving Formulas II

What's in a proof?

```
lemma Chu1: \langle \vdash ((p \rightarrow (p \rightarrow q)) \rightarrow (p \rightarrow q)) > by (meson Tran Clas MP)
```

Tran and Clas are two axioms of the proof system — MP is modus ponens "meson implements Loveland's model elimination procedure" [isar-ref]

meson proves the existence of a derivation for us

Łukasiewicz's Shortest Axiom I

A single axiom for the implicational propositional calculus

```
inductive WL (<>>) where

<> q> if <> p> and <> (p \rightarrow q)> |

<> (((p \rightarrow q) \rightarrow r) \rightarrow ((r \rightarrow p) \rightarrow (s \rightarrow p)))> |

<> (\perp \rightarrow p)>
```

We can reuse Łukasiewicz's notation

abbreviation (input) C :: <form \Rightarrow form \Rightarrow form> (<C _ > [0, 0] 1) where <(C p q) \equiv (p \rightarrow q)>

We formalize his derivation of the Wajsberg axioms

Łukasiewicz's Shortest Axiom II

- 2 CCCCrpCspCpqCrCpq. 1 p/CCrpCsp, q/Cpq, r/CrCpq, s/t + C2 - 3.
- $3 \quad C C C r C p q C C r p C s p C t C C r p C s p.$

```
lemma l1: <> (C C C p q r C C r p C s p)>
using WL.intros(2) .
```

lemma l2: <> (C C C C r p C s p C p q C r C p q)>
using l1 by (meson WL.intros(1))

lemma l3: <> (C C C r C p q C C r p C s p C t C C r p C s p)>
using l1 l2 by (meson WL.intros(1))

Łukasiewicz's Shortest Axiom III

We have formalized the 29 lines directly as given by Łukasiewicz Isabelle/HOL handles the instantiations

Easy to then show equivalence with the Wajsberg axioms

```
theorem equivalence: <> p ↔ ⊢ p>
proof
  have *: <⊢ (((p → q) → r) → ((r → p) → (s → p)))> for p q r s
    using completeness by simp
    show <⊢ p> if <> p>
    using that by induct (auto simp: * intro: Axiomatics.intros)
    show <> p> if <⊢ p>
    using that by induct (auto simp: l27 l28 l29 intro: WL.intros)
ged
```

System	Source	Page [3]	Axioms
Axiomatics	Wajsberg 1937	159	$p \rightarrow (q \rightarrow p)$ $(p \rightarrow q) \rightarrow (q \rightarrow r) \rightarrow (p \rightarrow r)$ $((p \rightarrow q) \rightarrow p) \rightarrow p)$ $\perp \rightarrow p$
FW	Wajsberg 1939	163	$ \begin{array}{c} p \rightarrow (q \rightarrow p) \\ (p \rightarrow (q \rightarrow r)) \rightarrow (p \rightarrow q) \rightarrow (p \rightarrow r) \\ ((p \rightarrow \bot) \rightarrow \bot) \rightarrow p) \end{array} $
WL	Lukasiewicz 1948	159	$((p \to q) \to r) \to ((r \to p) \to (s \to p \perp \to p))$
Axiomatics	Rasiowa 1949	157	$p \bigvee p \to p$ $p \to p \bigvee q$ $(p \to q) \to (r \bigvee p) \to (q \bigvee r)$
RB	Russell 1908, Bernays 1926	157	$p \bigvee p \to p$ $p \to p \bigvee q$ $p \bigvee q \to q \bigvee p$ $(p \to q) \to (r \bigvee p) \to (q \bigvee r)$
PM	Whitehead & Russell 191	0 -	$p \bigvee p \to p$ $p \to q \bigvee p$ $p \bigvee q \to q \bigvee p$ $(p \bigvee (q \bigvee r)) \to (q \lor (p \lor r))$ $(p \to q) \to (r \lor p) \to (q \lor r)$

Prototyping I

```
Consider the fragment \neg, \lor
```

datatype form = Pro nat | Neg form | Dis form form (**infix** $\langle \vee \rangle 0$) **abbreviation** Imp (**infix** $\langle \rightarrow \rangle 0$) where $\langle (p \rightarrow q) \equiv (\text{Neg } p \lor q) \rangle$

Rasiowa's axioms are natural for these primitives

```
inductive Axiomatics (<+>) where

MP \langle \vdash q \rangle if \langle \vdash p \rangle and \langle \vdash (p \rightarrow q) \rangle |

Idem \langle \vdash ((p \lor p) \rightarrow p) \rangle |

AddR \langle \vdash (p \rightarrow (p \lor q)) \rangle |

Swap \langle \vdash ((p \rightarrow q) \rightarrow ((r \lor p) \rightarrow (q \lor r))) \rangle
```

Prototyping II

However, unclear how to derive a formula like this where *sledgehammer* fails

lemma Tran: $\langle \vdash$ ((p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r)))

- Start deriving it manually?
- Try to imagine what formulas might help?

In either case, we can admit stepping stones to be derived later

lemma SwapAnte: $\langle \vdash$ (((p \bigvee q) \rightarrow r) \rightarrow ((q \bigvee p) \rightarrow r))> sorry

Prototyping III

lemma Chu1: $((p \rightarrow (p \rightarrow q)) \rightarrow (p \rightarrow q)) >$ by (meson Tran Clas MP) **lemma** Chu2: $\langle \vdash (p \rightarrow ((p \rightarrow q) \rightarrow q)) \rangle$ **by** (meson Chu1 Imp1 Tran MP) **lemma** Chu3: $((p \rightarrow (q \rightarrow r)) \rightarrow (q \rightarrow (p \rightarrow r)))$ by (meson Chu2 Tran MP) **lemma** Chu4: $((q \rightarrow r) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)))$ by (meson Chu3 Tran MP) **lemma** Imp2: $((p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)))$ by (meson Chu4 Chu1 Chu3 MP) **lemma** Imp3: $\langle \vdash (p \rightarrow p) \rangle$ by (meson Impl Tran Clas MP) **lemma** Neg: $\langle \vdash$ (((p $\rightarrow \perp$) $\rightarrow \perp$) \rightarrow p)> by (meson Chu4 Clas Expl MP)

Alternative Axioms

Can we swap out axiom AddR for an AddL that weakens on the left instead?

proposition alternative_axiom: by (metis MP Idem Swap that) $(\vdash (p \rightarrow (p \lor q)))$ if $(\land p q \vdash (p \rightarrow (q \lor p)))$

Yes! We can derive AddR from that

We can also derive AddL using AddR

lemma AddL: $\langle \vdash$ (p \rightarrow (q \bigvee p)) > **by** (metis MP Idem Swap AddR)

Unnecessary Axioms I

Russell 1908, Bernays 1926

Principia Mathematica Whitehead and Russell 1910 inductive RB ($\langle \mathbb{H} \rangle$) where $\langle \mathbb{H} q \rangle$ if $\langle \mathbb{H} p \rangle$ and $\langle \mathbb{H} (p \rightarrow q) \rangle$ | $\langle \mathbb{H} ((p \lor p) \rightarrow p) \rangle$ | $\langle \mathbb{H} (p \rightarrow (q \lor p)) \rangle$ | $\langle \mathbb{H} ((p \lor q) \rightarrow (q \lor p)) \rangle$ | $\langle \mathbb{H} ((p \lor q) \rightarrow (q \lor p)) \rangle$ | $\langle \mathbb{H} ((p \rightarrow q) \rightarrow ((r \lor p) \rightarrow (r \lor q))) \rangle$

inductive PM (<>>) where
<> q> if <> p> and <> (p
$$\rightarrow$$
 q)> |
<> ((p \lor p) \rightarrow p)> |
<> (p \rightarrow (q \lor p))> |
<> ((p \lor q) \rightarrow (q \lor p))> |
<> ((p \lor q) \rightarrow (q \lor p))> |
<> ((p \lor (q \lor r)) \rightarrow (q \lor (p \lor r)))>
<> ((p \lor (q \lor r)) \rightarrow (q \lor (p \lor r)))>

Unnecessary Axioms II

Easy to show that PM extends RB

```
proposition PM_extends_RB: <⊩ p ⇒> p>
by (induct rule: RB.induct) (auto intro: PM.intros)
```

RB is equivalent to Rasiowa's complete axioms

```
theorem Axiomatics_RB: <⊢ p ↔ ⊨ p>
proof
show <⊢ p> if <⊨ p>
using that by induct (use SubR Axiomatics.intros in meson)+
show <⊩ p> if <⊢ p>
using that by induct (use RB.intros in meson)+
ged
```

Takeaways

- Experiment with derivations at a high level
 - Quickly derive a range of formulas
 - Or mark them with sorry
- Let the proof assistant handle the details
 - Finding relevant axioms
 - Instantiating rules
- Every definition is given in precise language
- Every result is mechanically checked
- Verify and build on historical results

Abridged Bibliography

Łukasiewicz, J.: The shortest axiom of the implicational calculus of propositions. Proc. Royal Irish Acad. Sect. A: Math. Phys. Sci. 52, 25–33 (1948)

Church, A.: Introduction to Mathematical Logic. Princeton University Press, Princeton (1956)

Michaelis, J., Nipkow, T.: Formalized proof systems for propositional logic. TYPES 2017. LIPIcs, vol. 104 (2017), pp. 5:1–5:16.

From, A.H.: Formalizing Henkin-style completeness of an axiomatic system for propositional logic. ESSLLI Virtual Student Session (2020), pp. 1–12.

Wenzel, M.: The Isabelle/Isar Reference Manual. Part of the Isabelle distribution (2021).

Nipkow, T. et al. "Functional Algorithms, Verified!" (2021). https://functional-algorithms-verified.org/